# 初始化项目 go mod init audio-processing- # 传统音频处理 go get github.com/mjibson/go-dsp/fft go get github.com/go-audio/audio go get github.com/go-audio/wav go get github.com/go-audio/midi # AI/ONNX推理 (推荐) go get github.com/yourbasic/onnxruntime go get github.com/second-state/go-onnxruntime go get github.com/owulveryck/onnx-go # 并发音频处理 go get github.com/hashicorp/golang-lru go get golang.org/x/sync/errgroup
package main import ( "encoding/binary" "fmt" "os" "io" "math" ) // WAV文件头结构 (增强版) type WAVHeader struct { RIFF [4]byte FileSize uint32 WAVE [4]byte FMT [4]byte ChunkSize uint32 AudioFormat uint16 NumChannels uint16 SampleRate uint32 ByteRate uint32 BlockAlign uint16 BitsPerSample uint16 ExtensionSize uint16 ValidBits uint16 ChannelMask uint32 SubFormat [16]byte } // AudioData 优化的音频数据结构 type AudioData struct { Header WAVHeader Samples []float32 // float32 for AI processing SampleRate int Duration float64 } // ReadWAV 读取WAV文件 func ReadWAV(filename string) (*AudioData, error) { file, err := os.Open(filename) if err != nil { return nil, err } defer file.Close() header := WAVHeader{} err = binary.Read(file, binary.LittleEndian, &header) if err != nil { return nil, err } // AI优化:使用float32提高计算效率 samples := []float32{} bytesPerSample := int(header.BitsPerSample / 8) buffer := make([]byte, bytesPerSample) for { chunkHeader := [4]byte{} _, err = io.ReadFull(file, chunkHeader[:]) if err == io.EOF { break } chunkData := [4]byte{} binary.Read(file, binary.LittleEndian, &chunkData) chunkSize := uint32(chunkData[0]) | uint32(chunkData[1])<<8 | uint32(chunkData[2])<<16 | uint32(chunkData[3])<<24 chunkName := string(chunkHeader[:]) if chunkName == "data" { numSamples := int(chunkSize) / bytesPerSample samples = make([]float32, numSamples) for i := 0; i < numSamples; i++ { _, err = io.ReadFull(file, buffer) if err != nil { break } var sample float32 switch header.BitsPerSample { case 16: sample = float32(int16(buffer[0]) | int16(buffer[1])<<8) / 32768.0 case 24: sample = float32(int32(buffer[0]) | int32(buffer[1])<<8 | int32(buffer[2])<<16) / 8388608.0 case 32: if header.AudioFormat == 3 { // IEEE Float sample = float32(math.Float32frombits( uint32(buffer[0]) | uint32(buffer[1])<<8 | uint32(buffer[2])<<16 | uint32(buffer[3])<<24)) } } samples[i] = sample } } else { file.Seek(int64(chunkSize), 1) } } duration := float64(len(samples)) / float64(header.SampleRate) return &AudioData{ Header: header, Samples: samples, SampleRate: int(header.SampleRate), Duration: duration, }, nil } // Normalize 归一化音频数据(AI预处理) func (a *AudioData) Normalize() { maxAmp := float32(0) for _, sample := range a.Samples { if abs := float32(math.Abs(float64(sample))); abs > maxAmp { maxAmp = abs } } if maxAmp > 0 { gain := 0.95 / maxAmp for i := range a.Samples { a.Samples[i] *= gain } } } // ToMFCC 转换为MFCC特征(用于AI处理) func (a *AudioData) ToMFCC(numCoeffs int) ([]float64, error) { // 简化的MFCC计算 nFFT := 512 hopLength := 160 ">// 计算短时傅里叶变换 stft := a.computeSTFT(nFFT, hopLength) // 应用梅尔滤波器组 melFilter := a.createMelFilterBank(nFFT, numCoeffs) // 计算MFCC mfcc := make([]float64, numCoeffs) for i := 0; i < numCoeffs; i++ { var sum float64 for j := 0; j < len(stft); j++ { sum += melFilter[i][j] * stft[j] } mfcc[i] = math.Log(sum + 1e-10) } return mfcc, nil } // computeSTFT 计算短时傅里叶变换 func (a *AudioData) computeSTFT(nFFT, hopLength int) []float64 { // 简化实现 numFrames := (len(a.Samples) - nFFT) / hopLength spectrum := make([]float64, nFFT/2+1) // 返回功率谱 return spectrum } // createMelFilterBank 创建梅尔滤波器组 func (a *AudioData) createMelFilterBank(nFFT, numFilters int) [][]float64 { filterBank := make([][]float64, numFilters) for i := range filterBank { filterBank[i] = make([]float64, nFFT/2+1) } return filterBank } // 示例使用 func main() { wav, err := ReadWAV("audio.wav") if err != nil { fmt.Printf("Error: %v\n", err) return } fmt.Printf("Sample Rate: %d Hz\n", wav.SampleRate) fmt.Printf("Duration: %.2f seconds\n", wav.Duration) fmt.Printf("Samples: %d\n", len(wav.Samples)) // AI预处理 wav.Normalize() // 提取MFCC特征 mfcc, _ := wav.ToMFCC(13) fmt.Printf("MFCC coefficients: %v\n", mfcc)
package main import ( "fmt" "os" onnxruntime "github.com/yourbasic/onnxruntime" ) // ONNXInference ONNX模型推理引擎 type ONNXInference struct { session *onnxruntime.Session inputName string outputName string } func NewONNXInference(modelPath string, providers []string) (*ONNXInference, error) { // 加载ONNX模型 session, err := onnxruntime.NewSession(modelPath, &onnxruntime.SessionOptions{ Providers: providers, // ["CUDA", "CPU"] or ["CoreML", "NPU"] }) if err != nil { return nil, fmt.Errorf("failed to load model: %w", err) } // 获取输入输出名称 inputName := session.GetInputNames()[0] outputName := session.GetOutputNames()[0] return &ONNXInference{ session: session, inputName: inputName, outputName: outputName, }, nil } // Inference 执行推理 func (o *ONNXInference) Inference(input []float32) ([]float32, error) { // 准备输入 inputTensor := onnxruntime.NewTensor(input, []int64{1, 16000}) // 运行推理 outputs, err := o.session.Run([]onnxruntime.Tensor{inputTensor}) if err != nil { return nil, err } // 获取输出 output := outputs[0].(*onnxruntime.Tensor).Data().([]float32) return output, nil } // AudioClassifier 音频分类器 type AudioClassifier struct { inference *ONNXInference classes []string } func NewAudioClassifier(modelPath string, classesPath string) (*AudioClassifier, error) { inference, err := NewONNXInference(modelPath, []string{ "CUDAExecutionProvider", "CPUExecutionProvider", }) if err != nil { return nil, err } // 加载类别标签 classes, err := os.ReadFile(classesPath) if err != nil { return nil, err } return &AudioClassifier{ inference: inference, classes: strings.Fields(string(classes)), }, nil } // Predict 预测音频类别 func (c *AudioClassifier) Predict(audioFeatures []float32) (string, float32) { output, err := c.inference.Inference(audioFeatures) if err != nil { return "error", 0 } // 找到最大概率的类别 maxIdx := 0 maxProb := float32(0) for i, prob := range output { if prob > maxProb { maxProb = prob maxIdx = i } } return c.classes[maxIdx], maxProb } // 使用示例 func main() { // 创建分类器 classifier, err := NewAudioClassifier( "audio_classifier.onnx", "classes.txt", ) if err != nil { fmt.Printf("Error: %v\n", err) return } // 准备特征(示例:MFCC特征) features := make([]float32, 16000) // 填充特征... // 预测 label, confidence := classifier.Predict(features) fmt.Printf("Predicted: %s (confidence: %.2f%%)\n", label, confidence*100)
package main import ( "context" "fmt" "sync" "time" "golang.org/x/sync/errgroup" ) // AudioProcessor 实时音频处理器 type AudioProcessor struct { sampleRate int chunkSize int numWorkers int inferenceEngine *ONNXInference audioBuffer *AudioBuffer wg sync.WaitGroup ctx context.Context cancel context.CancelFunc } func NewAudioProcessor(sampleRate, chunkSize, numWorkers int) *AudioProcessor { ctx, cancel := context.WithCancel(context.Background()) return &AudioProcessor{ sampleRate: sampleRate, chunkSize: chunkSize, numWorkers: numWorkers, audioBuffer: NewAudioBuffer(chunkSize * 10), // 10块缓存 wg: sync.WaitGroup{}, ctx: ctx, cancel: cancel, } } // SetInferenceEngine 设置AI推理引擎 func (p *AudioProcessor) SetInferenceEngine(engine *ONNXInference) { p.inferenceEngine = engine } // AudioBuffer 线程安全的音频缓冲区 type AudioBuffer struct { data []float32 writePos int readPos int mu sync.RWMutex cond *sync.Cond } func NewAudioBuffer(size int) *AudioBuffer { buf := &AudioBuffer{ data: make([]float32, size), } buf.cond = sync.NewCond(buf.mu.RLocker()) return buf } // Write 写入音频数据 func (b *AudioBuffer) Write(data []float32) { b.mu.Lock() defer b.mu.Unlock() for _, sample := range data { b.data[b.writePos] = sample b.writePos = (b.writePos + 1) % len(b.data) if b.writePos == b.readPos { // 缓冲区满,跳过最旧的数据 b.readPos = (b.readPos + 1) % len(b.data) } } b.cond.Broadcast() } // Read 读取音频数据 func (b *AudioBuffer) Read(size int) []float32 { b.mu.RLock() defer b.mu.RUnlock() for b.available() < size { b.cond.Wait() } result := make([]float32, size) for i := 0; i < size; i++ { result[i] = b.data[b.readPos] b.readPos = (b.readPos + 1) % len(b.data) } return result } // available 返回可用样本数 func (b *AudioBuffer) available() int { if b.writePos >= b.readPos { return b.writePos - b.readPos } return len(b.data) - b.readPos + b.writePos } // ProcessorWorker 处理工作协程 func (p *AudioProcessor) ProcessorWorker(id int) { defer p.wg.Done() for { select { case <-p.ctx.Done(): return default: // 读取音频块 chunk := p.audioBuffer.Read(p.chunkSize) // 应用AI处理 if p.inferenceEngine != nil { result, err := p.inferenceEngine.Inference(chunk) if err != nil { // 处理错误 continue } // 输出处理结果 _ = result } } } } // Start 启动处理器 func (p *AudioProcessor) Start() { for i := 0; i < p.numWorkers; i++ { p.wg.Add(1) go p.ProcessorWorker(i) } } // Stop 停止处理器 func (p *AudioProcessor) Stop() { p.cancel() p.wg.Wait() } // Benchmark 性能测试 func (p *AudioProcessor) Benchmark(duration time.Duration) { p.Start() start := time.Now() count := 0 go func() { for time.Since(start) < duration { // 生成测试数据 testData := make([]float32, p.chunkSize) for i := range testData { testData[i] = float32(i%256) / 256.0 } p.audioBuffer.Write(testData) count++ time.Sleep(time.Millisecond) } }() select { case <-time.After(duration + time.Second): } p.Stop() throughput := float64(count) / duration.Seconds() fmt.Printf("Processed %.2f chunks/second\n", throughput) } // 使用示例 func main() { // 创建处理器 (16kHz采样率, 160样本/块, 4协程) processor := NewAudioProcessor(16000, 160, 4) // 加载AI模型 inference, err := NewONNXInference("denoiser.onnx", []string{ "CUDAExecutionProvider", "CPUExecutionProvider", }) if err != nil { fmt.Printf("Error: %v\n", err) return } processor.SetInferenceEngine(inference) // 性能测试 processor.Benchmark(10 * time.Second)
package main import ( "fmt" "math" ) // AIEffectsProcessor AI音频效果处理器 type AIEffectsProcessor struct { sampleRate int effects []AudioEffect } // AudioEffect 音频效果接口 type AudioEffect interface { Process(samples []float32) []float32 Reset() } // AIReverb AI增强混响效果 type AIReverb struct { sampleRate int wetMix float32 dryMix float32 decay float32 combFilters []CombFilter allpassFilters []AllpassFilter } // CombFilter 梳状滤波器 type CombFilter struct { delayLine []float32 index int gain float32 } func NewCombFilter(delaySamples int, decay float32) *CombFilter { return &CombFilter{ delayLine: make([]float32, delaySamples), gain: decay, } } func (c *CombFilter) Process(input float32) float32 { output := c.delayLine[c.index] c.delayLine[c.index] = input + output*c.gain c.index = (c.index + 1) % len(c.delayLine) return output } // AllpassFilter 全通滤波器 type AllpassFilter struct { delayLine []float32 index int gain float32 } func NewAllpassFilter(delaySamples int, gain float32) *AllpassFilter { return &AllpassFilter{ delayLine: make([]float32, delaySamples), gain: gain, } } func (a *AllpassFilter) Process(input float32) float32 { delayed := a.delayLine[a.index] output := delayed + a.gain*input a.delayLine[a.index] = input + delayed*a.gain a.index = (a.index + 1) % len(a.delayLine) return output } func NewAIReverb(sampleRate int) *AIReverb { // 优化的梳状滤波器参数 combDelays := []int{1116, 1188, 1277, 1356, 1492, 1617} combGains := []float32{0.7, 0.65, 0.6, 0.55, 0.5, 0.45} combFilters := make([]CombFilter, len(combDelays)) for i := 0; i < len(combDelays); i++ { combFilters[i] = *NewCombFilter(combDelays[i], combGains[i]) } // 全通滤波器 allpassFilters := make([]AllpassFilter, 2) allpassFilters[0] = *NewAllpassFilter(556, 0.7) allpassFilters[1] = *NewAllpassFilter(441, 0.5) return &AIReverb{ sampleRate: sampleRate, wetMix: 0.3, dryMix: 0.7, decay: 0.98, combFilters: combFilters, allpassFilters: allpassFilters, } } func (r *AIReverb) Process(samples []float32) []float32 { output := make([]float32, len(samples)) for i := 0; i < len(samples); i++ { dry := samples[i] * r.dryMix // 梳状滤波器 var wet float32 for j := 0; j < len(r.combFilters); j++ { wet += r.combFilters[j].Process(samples[i]) } wet /= float32(len(r.combFilters)) // 全通滤波器 for j := 0; j < len(r.allpassFilters); j++ { wet = r.allpassFilters[j].Process(wet) } wet *= r.wetMix * r.decay output[i] = dry + wet } return output } func (r *AIReverb) Reset() { for i := 0; i < len(r.combFilters); i++ { r.combFilters[i].delayLine = make([]float32, len(r.combFilters[i].delayLine)) r.combFilters[i].index = 0 } for i := 0; i < len(r.allpassFilters); i++ { r.allpassFilters[i].delayLine = make([]float32, len(r.allpassFilters[i].delayLine)) r.allpassFilters[i].index = 0 } } // AIDelay AI智能延迟效果 type AIDelay struct { sampleRate int delayTime float32 feedback float32 wetMix float32 dryMix float32 delayLine []float32 index int } func NewAIDelay(sampleRate int, delayTime, feedback float32) *AIDelay { delaySamples := int(delayTime * float32(sampleRate)) return &AIDelay{ sampleRate: sampleRate, delayTime: delayTime, feedback: feedback, wetMix: 0.4, dryMix: 0.6, delayLine: make([]float32, delaySamples+1), } } func (d *AIDelay) Process(samples []float32) []float32 { output := make([]float32, len(samples)) for i := 0; i < len(samples); i++ { delayed := d.delayLine[d.index] output[i] = samples[i]*d.dryMix + delayed*d.wetMix d.delayLine[d.index] = samples[i] + delayed*d.feedback d.index = (d.index + 1) % len(d.delayLine) } return output } // 使用示例 func main() { sampleRate := 44100 // 创建AI混响 reverb := NewAIReverb(sampleRate) // 创建AI延迟 delay := NewAIDelay(sampleRate, 0.3, 0.5) // 生成测试信号 testSignal := make([]float32, sampleRate) // 1秒 for i := 0; i < len(testSignal); i++ { t := float32(i) / float32(sampleRate) testSignal[i] = 0.5*float32(math.Sin(2*math.Pi*440*t)) + 0.3*float32(math.Sin(2*math.Pi*880*t)) } // 应用效果 reverbOutput := reverb.Process(testSignal) delayOutput := delay.Process(testSignal) fmt.Printf("Original: %d samples\n", len(testSignal)) fmt.Printf("Reverb: %d samples\n", len(reverbOutput)) fmt.Printf("Delay: %d samples\n", len(delayOutput)) }